Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

COMBINED HEAT & POWER AND HEAT PUMP FOR RESIDENTIAL USE. System design for minimum CO₂ emissions and best economy.

Jean-Bernard Michel

Geneva Institute of Technology, University of Applied Sciences of Western Switzerland

E. Conti , Y. Grandjean CONTI & ASSOCIES Ingénieurs SA, Geneva, Switzerland

Outline

Fachhochschule Westschweiz University of Applied Sciences

Western Switzerland

- The University of Applied Science of Western Switzerland
- The energy policy of the State of Geneva
- Principle of the HP-CHP combined system
- Design alternatives and results
- Conclusions

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

HES-SO Educational fields

Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

Energy related R&D activities

Geneva and Yverdon

- HVAC systems
- CFD
- Wood combustion improvement
- Wind tunnel testing of eolian machines
- Combustion control systems
- Phase change materials and ice slurries (IEA working group)
- Magnetic cooling

Energy vision in Switzerland

Within the next 50 years, Switzerland plans to:

- Divide by 3 the power requirement \rightarrow 2 kW/person
- Divide by 6 the CO2 emissions to attain less than 1 ton/person/year
- In Geneva several measures are used in the building sector:
- Improve buiding design by imposing construction standards and certificates
- Plan the energy supply at district level
- Promote the use of renewables and local energy sources: wood, solar, geothermal, wastes

University of Applied Sciences Western Switzerland

Evolution of the construction

Heat pump

Combined Heat-Pump with a CHP pla Field Sciences Western Switzerland

Haute Ecole Spéci

Use of CHP power to cover 100% of the Heat-Pump needs ¹⁰

Alternative case: Partial Use of CHP University of Applied Sciences to cover the heat-pump needs

Possibility to use the tariff difference peak vs. off-peak hours

Fachhochschule Westschweiz

Western Switzerland

Design hypotheses

Fachhochschule Westschweiz University of Applied Sciences Western Switzerland

New building lots with staged construction

- Additional cost is capitalised for comparison of several options (5% /annum)
- Installation lifetime of 20 years
- Heat pump does not produce warm water
- CHP power used in priority by heat pump
- Warm water is produced first by CHP then by auxiliary boiler
- Heat is produced first by heat pump then by CHP then by auxiliary boiler
- Heat-pump performance varies with cold source temperature
- CHP turn-down ratio = 50% , HP turn-down ratio = 20%

Program outline

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

University of Applied Sciences Western Switzerland

Yearly consumption distribution

Haute Ecole Spécialisé de Suisse occidentale Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

Dimensioning of CHP – HP

1) The CHP operates at full power. Excess electricity is sold to the grid

CO2 = 730 tons/year

2) The CHP operates in a proportional mode - In practice it cannot go below 50% turn-down CO2 = 268 tons/year

CO2 = 400 tons/y i.e. 25% reduction compared to reference

Summary

Fachhochschule Westschweiz

University of Applied Sciences Western Switzerland

Case 2: 268 – 730 tons CO2/y

Case of CHP producing electriciy for the suise ocidental network – Boiler heat production minimum

Conclusions

University of Applied Sciences Western Switzerland

- The concept of HP-CHP system has a strong potential for overall economy and reduced CO2 emissions
- It is applicable within an overall district planning of energy supply in cities
- It requires government incentives to facilitate project finance
- It leads to increased renting cost that can be compensated by the lower energy bills.
- Simple computer program developed to compare various options.

University of Applied Sciences

Western Switzerland

Euro-China Efficient-Buildings Forum

27 & 28 September 2007 in Shanghai

Euro-China Energy-Efficient Buildings Forum 2007
楼 宇 节 能 中 欧 论 坛 2007
Existing and novel approaches of sustainable technologies for building in a fast growing economy Shanghai, 26 and 27 September, 2007
经济高速发展中建筑业现有和创新的可持续技术手段

上海 2007年9月26-27日

swisscham.org

Hes∙so

Haute Ecole Spécialisée de Suisse occidentale Fachhochschule Westschweiz University of Applied Sciences Western Switzerland