

Haute école du paysage, d'ingénierie et d'architecture de Genève

FNSNF

ONDS NATIONAL SUISSE CHWEIZERISCHER NATIONALEONI viss National Science Foundatio

II. Vertical wind tunnel

A study of sedimentation and aggregation of volcanic particles based on experiments carried out with a vertical wind tunnel

Gh. Bagheri¹, C. Bonadonna¹, I. Manzella¹, P. Pontelandolfo², P. Haas²

¹Section des sciences de la Terre et de l'environnement, University of Geneva, Rue des Maraîchers 13, CH-1205 Genève, Switzerland. ²University of Applied Sciences Western Switzerland, HEPIA, CH-1202 Genève, Switzerland.

Poster no. V41B-2795

 d_{eq} is the diameter of a sphere having the same volume as the particle. **Particle form**

Particle equivalent diameter

L is the particle longest dimension. *I* is longest dimension of the particle perpendicular to L. S is particle dimension perpendicular to both L and I.

Roundness

Measured by image processing on particle projection images and is equal to 4π (area) / (perimeter)².

Real sphericity Measured by a 3D-scanner and is equal to $\pi d_{eq}^2 / (particle surface)$ area)

	Estimated t	Estimated terminal velocity error %		
	Min	Max	Mean	
	8.1	60.3	29.8	
9)	3.4	40.0	28.3	
1989)	4.0	46.0	27.0	
	1.5	46.3	27.1	

• The wind tunnel performance and its calibration along with the PTV code can be used to produce reliable and accurate measurement on the drag coefficient of particles of

• Velocities between 5 and 27 ms^{-1} can be obtained, which correspond to settling velocities of typical volcanic particles with diameters between 10 and 40 mm (density

• Terminal velocity of non-spherical particles can be explained better with a range of