

## Industrial Applications of CFD : From Formula 1 to Watch Design

Patrick Haas, Prof. HES









## SWISS UNIVERSITIES OF APPLIED SCIENCES AND ARTS









### **100 YEARS OF FLUID MECHANICS AT HEPIA**

1900 : First activities in thermics and aerotechnics. « Marc Birkigt years ».

1940 : Activities in sailing and civil engineering.

1970 : design and building of wind tunnels of bigger sizes.



1980 : Pulsated Over Heated Water Rocket POHWARO

1984 : development of an implicit code for transonic flow simulation. Begining of CFD use at hepia-cmefe !

1987 : Acquisition of the Hispano test facilities in Pont-Butin (Geneva).

1995 : Design and production of the big wind tunnel at Pont-Butin.



2003 : Investments in the calculation power of the group.

2005 : A great part of the financial ressources comes from local industry.







hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève





www.cmefe.ch

GCC Tech Lunch, Feb 11, 2016





### **HEPIA-CMEFE COMPUTATIONAL RESSOURCES**

- 7 Workstations 126 Gb RAM, 16 cores 3.2 GHz
- 224 Cores Calculation Server, 3 Gb / cores RAM, Infiniband Interconnects
- 70 Tb HD RAID5 storage
- ANSYS CFD Associate Licences
- OpenFoam (Open source CFD)
- In house developed codes (C, Fortran)







www.cmefe.ch

GCC Tech Lunch, Feb 11, 2016

**Patrick Haas** 





### HEPIA UAV FOR AIR POLLUTION MEASUREMENTS





• 15 Million cells

 10 days calculation on 48 cores (0.00001 s time step)

| Propeller speed<br>(t/min) | Lift CFD<br>(N) |        |         | Lift wind<br>tunnel |      |
|----------------------------|-----------------|--------|---------|---------------------|------|
| Time step (s)              | 0.01            | 0.0001 | 0.00002 | 0.00001             | (N)  |
| 3'810                      | 10.9            | 17.9   |         | 18.4                | 22.0 |
| 4'202                      | 12.7            | 21.3   |         | 22.5                | 25.0 |
| 4'584                      | 15.4            | 25.4   |         |                     | 30.2 |
| 4'966                      | 15.8            | 29.6   |         |                     | 38.3 |
| 5'348                      | 16.0            | 35.6   | 36.5    | 36.5                | 46.2 |
| 5'730                      | 24.7            | 51.9   | 42.0    |                     | 50.5 |

Figure 14. Lift generated by the UAV propellers and time step sensibility.



**Patrick Haas** 

www.cmefe.ch

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

### WATER FOUNTAIN GENEVA





Vue depuis le toit d'hepia, le 6 mai 2014 (pendant la période d'essais de la nouvelle buse)

www.cmefe.ch

l'écoulement dans la buse et du jet

GCC Tech Lunch, Feb 11, 2016

**Patrick Haas** 



# VATER FOUNTAIN GENEVA



- Model SIMPLE, ANSYS 13
- Catia CAD
- ICEM Mesh patch independent
- 22 Millions cells
- Domain : 60 m x 60 m x 150 m
- RANS k-e RNG, VOF
- Standard wall functions
- 14 days calculation on 48 cores for 10 sec real time

| Wind 0 (m/s) | New<br>nozzle | Existing<br>nozzle |
|--------------|---------------|--------------------|
| CFD analysis | 126 m         | 136 m              |
| Measurements | 120 m         | 140 m              |

| Wind 2 (m/s) | New<br>nozzle | Existing<br>nozzle |
|--------------|---------------|--------------------|
| CFD analysis | 118 m         | 134 m              |
| Measurements | 115 m         | 135 m              |

**Patrick Haas** 

www.cmefe.ch





### ELECTRO-MACHINING (EDM) PROCESS HYDRODYNAMICS



Map mesh (hexahedron)

Tgrid patch conform mesh (tetrahedron)



*Tgrid patch conform mesh for tank and nozzle (tetrahedron), Cooper hexaedron for the slot and gap.* 



- Particles trajectories calculation
- Injection nozzle design for a faster production in wire EDM and die sinking EDM

#### **Patrick Haas**

hepia





### **MECHANICAL WATCHES DESIGN**



- Polyhedron elements
- Wheels in rotation and interfaces
- 4 Hz oscillating movement
- Moving parts aerodynamics (shears, pressures)
- How the energy is loss in a watch ?
- How to increase eficiency, reserve ?



Contours of Wall Shear Stress (pascal) (Time=1.7500e-01) hepia-cmefe ANSYS FLUENT 13.0 (3d, dp, pbns, lam, transient)



**Patrick Haas** 

www.cmefe.ch



## EXAMPLE OF WORKING METHOD MOTORSPORTS AERODYNAMICS

Since many years hepia is working on motorsports aerodynamics :

- Egli Motorradtechnik (1985) Bachelor thesis
- Motos ROC Annemasse (1992) Bachelor Thesis
- ASM Formula 3 (2006)
- Eco-marathon Shell : Consomini (2003-05), Biomobile.ch (2005 actual)
- Motostudent PoliTo Turin (2011-12)
- Moto2 NCS Rapid Inside Modena (2011)
- Audit of the Formula 1 teams (2010 2013)
- MotoGP Akira (2014 actual)
- Moto2 Tech3 (2014)
- Moto2 Technomag CarXpert Suter and Kalex (2014 actual)
- Vyrus M2 (2016)

How CFD advantages can be applied to these hepia activities ?



## THE TRADITIONAL WORKING METHOD

- Based on experience and feeling, production of parts in rapid prototyping
- Use of a motorcycle rigid support and a 6 components balance
- Rotation of the front wheel using a rolling belt



Patrick Haas

www.cmefe.ch





## THE TRADITIONAL WORKING METHOD

Experimental analysis of the moto2 Ri211 from Rapid Inside NCS (Modena) in 2011. Air box inlet design.





- Until a recent time such study was done exclusively by the use of wind tunnel measurements or on track !
- Offently, only the global effect is measured (i.e. the total forces and moments).

Expensive investigation time is needed to get complex phenomenon understanding.





## A MUCH EFFICIENT WAY TO WORK : EXAMPLE WITH THE FORMULA 1 TEAMS



Formula One Teams Association

- From 2010 to 2013 hepia worked as partner of the Formula One Teams Association (FOTA)
- Patrick Haas and Roberto Putzu are team auditors in charge of the « Aerodynamic testing and CFD simulation Regulation »



Force India

#### hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

### FORMULA 1 WIND TUNNELS









Some Formula 1 wind tunnels



**Patrick Haas** 

www.cmefe.ch



## FORMULA 1 WIND TUNNELS

### « Aerodynamic Testing Restrictions (FOTA) »

- Regulation adopted to reduce costs!
- 60% max. model scale
- 50 m/s max air speed
- Rolling belt
- Boundary layer succion
- Tests for several angles (pitch, yaw)
- More than 500 complete tests a month (all angles) in addition to CFD

A test every 30 minutes !

Engineers need to understand well the flow structure and to imagine a lot of potential solutions.





### **FORMULA 1 CFD METHODS**







## FORMULA 1 CFD METHODS

## « Aerodynamic CFD Restrictions (FOTA 2013) »



 The number of operations in a period of 2 months is limited

- Up to 18 h CPU time on a server of hunderth of cores per simulation
- Up to 1'500 CFD simulation per month

Up to 50 simulations full car per day !

Sauber



## **CFD CAPABILITIES OF THE FORMULA 1 TEAMS**



Albert HPC server, Sauber

- Commercially available codes (ANSYS Fluent, Star CCM+)
- Finite volume approach
- Highly parallelized computer of 64 bits processors
- Servers with up to 6'000 cores
- Up to 18'000 Gb RAM
- Infiniband DDR 48 Gbit/s interconnections or better
- Approx. 100 kW electrical suply
- Approx. 150 kW cooling tower (condenser)



## WHAT CAN BE LEARNED FROM THE **FORMULA 1 TEAM WORK?**



Mercedes AMG F1 WA06, 2015

1. CFD intensive computations:

Ferrari SF15T, 2015

CFD shows all quantities everywhere without perturbing the flow at the time scale you want! New ideas!

Complete and detailed flow understanding



Complex geometry optimisations – Parameter studies 

**Patrick Haas** 





## WHAT CAN BE LEARNED FROM THE FORMULA 1 TEAM WORK?

### 2. Wind tunnel tests:

- Instrumented models (balances, PSI, motorized wheels, suspensions, ecc.)
- Rapid prototyping parts on a steel body
- Exceptional methodology and work organization

### 3. Tests on track:

- Aspect ratio and size effects
- Hypothesis validation



Marussia 2015



### Haute école du paysage, d'ingénierie et d'architecture de Genève THE RESULTS OBTAINED BY THE FORMULA 1 TEAMS ARE REALLY IMPRESSIVE

The methodology is used for the design of all significant systems and leads to the most impressive results industry never reached.



- The aerodynamics down force is 3'000 kg at 300 km/h
- The engine output is approx. 800 HP for an engine mass of 95 kg
- The total mass of a F1 is 600 kg (regulation)
- A Formula 1 brakes from 200 km/h to 0 in 2.9 sec on 65 m
- The Formula 1 teams develop the KERS system in a few months...

CFD and other simulation technics are major tools used by the teams.

**Patrick Haas** 





### THE HEPIA MOTO2 AERODYNAMIC PROGRAM

### 1. Wind tunnel tests with 50% scale models

- Difficulties having the bike for a long time in the wind tunnel (no second bike allowed in moto2 regulation)
- Aspect ratio (front area / test section)
- Costs

### 2. Wind tunnel tests at full scale

- Pilot training and position, seat definition
- Validation of CFD results
- Continuity with the past (known results and effects)

### 3. Simulation CFD

- Flow understanding
- New ideas, aerodynamic program definition
- Motor cooling and thermal analysis





hepia-cmefe ANSYS Fluent 14.5 (3d, dp, pbns, sstkw)

### **Patrick Haas**





### THE HEPIA MOTO2 AERODYNAMIC PROGRAM

### 4. On track aerodynamic drag evaluation

- Full scale
- Complete motorcycle (the true one!)
- Made by torque measurement on gearbox shaft
- Job done using a motoGP to investigate the effect of the aspect ratio
- 5. Race results analysis
  - ECU logger data analysis



Italy Grand Prix 2015



Each chapter is used for their advantages in a way to avoid weakness of the other ones. You need all these approaches together to go to the success!

The objective is a real increase of performances during the races, i.e. on track!





### WIND TUNNEL TESTS WITH 50% SCALE MODELS

### **CAD Model Development**



Scan 3D, CAD, ecc.



Motor Honda 600 cm3



**Patrick Haas** 







### WIND TUNNEL TESTS WITH 50% SCALE MODELS

### Model production and instrumentation



Fairing





Model assembly

Motorized wheel

Patrick Haas





WIND TUNNEL TESTS AT FULL SCALE



T. Lüthi



Suter





Tech3

#### hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

## **CFD SIMULATIONS**





Radiator as an anysotropic

Rotating wheels with mesh

porous media

interfaces

### **Objectives**

- External and internal aerodynamics
- Drag optimisation
- Thermal exchange



Velocity Vectors Colored By Velocity Magnitude (m/s)

Jan 23, 2015 ANSYS FLUENT 13.0



## **CFD SIMULATIONS**





### Modeler

- Catia V5
- ANSYS SCDM (Space Claim Design Modeler)

### Mesher

- ANSYS ICEM
- Workstation 16 cores, 126 Gb RAM
- 30 millions cells



Mesh

hepia-cmefe Sep 02, 2015 ANSYS Fluent 14.5 (3d, dp, pbns, sstkw, transient)

www.cmefe.ch

#### а

Haute école du paysage, d'ingénierie et d'architecture de Genève

## **CFD SIMULATIONS**



### Scan of the pilot

- Hand scanned (fast)
- **Dominique Aegerter**
- **Correct positions**
- All suit and helmet details!





Dominique Aegerter 77 and Kalex Moto2

Sep 02, 2015 ANSYS Fluent 14.5 (3d, dp, pbns, sstkw, transient)

www.cmefe.ch

**Patrick Haas** 



## **CFD SIMULATIONS**





### Solver

- ANSYS CFD Fluent
- Server 224 cores, 3 GHz
- Pressure based solver
- Turbulence SST kw



Velocity Vectors Colored By Velocity Magnitude (m/s)

Jan 23, 2015 ANSYS FLUENT 13.0

www.cmefe.ch

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

### **CFD SIMULATIONS**





Velocity Vectors Colored By Velocity Magnitude (m/s)

hepia-cmefe Apr 28, 2015 ANSYS Fluent 14.5 (3d, dp, pbns, sstkw, transient)

**Patrick Haas** 

www.cmefe.ch



## **CFD SIMULATIONS**

Example : Understanding of side fairings and radiator interactions New design of the fairings and radiator.



ANSYS FLUENT 13.0

**Patrick Haas** 

www.cmefe.ch



## **FINAL RESULTS**



### SCx values

Moto2 Kalex Aegerter 2015 (with our work)

| CFD simulations                                     | : | 0.230 |
|-----------------------------------------------------|---|-------|
| Wind tunnel full scale (corrected for aspect ratio) | : | 0.250 |
| Moto2 Kalex Aegerter 2015 (original)                | : | 0.290 |

- Gain on the aerodynamic drag of about 20% (original position and material)
- Selection of the best pilot position, seat design (thicknesses)
- Suit design (back) and helmet choice. Interaction between these two elements.
- Better design of several bike parts

#### hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève





- In the top speed of all moto2 riders during the full 2015 championship
- 7 speed records in 2015

| After the Results and timing service provided by TISSOT<br>RED BULL INDIANAPOLIS GRAND PRIX |                                    |                                                                        | Moto2          |                                         |
|---------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------|----------------|-----------------------------------------|
|                                                                                             | 4170 m. Event E                    | Best Maximum Speed                                                     |                | 33                                      |
|                                                                                             | Rider                              | Nation Team                                                            | Motorcvcle     | <i>Km/h</i>                             |
| = <b>™</b> =<br>12<br>77                                                                    | Thomas LUTHI<br>Dominique AEGERTER | SWI Derendinger Racing Interwetten<br>SWI Technomag Racing Interwetten | KALEX<br>KALEX | 290.0 Race<br>289.3 Free Practice Nr. 1 |







## RESULTS

### Illustration of the top speed gain achieved : Mugello 2015



Tito Rabat (1) not able to pass Dominique Aegerter (77) instead of speed gain obtained by aspiration.



## CONCLUSIONS



- Between 1984, when hepia-cmefe write one of his first CFD code, and today, CFD technics appears in our works an extremely powerful tool.
- For all these years hepia-cmefe applied CFD in a great variety of projects in conjunction with experimental technics.
- When the benefit of CFD is well understood and not over / under evaluated, very efficient methodologies can be defined and used.
- The major risk when using CFD technics is the definition of the calculation domain. Where shall I put its boundaries ? Do I know the conditions to be imposed at the boundaries (sometime complex) ?

CFD simulation gives understanding and leads to new ideas.

This is a fantastic tool !!!





## **THANKS, QUESTIONS?**



Contours of Velocity Magnitude (mixture) (m/s) (Time=1.1150e+02) Jan 11, 2016 ANSYS Fluent Release 16.2 (3d, dp, pbns, vof, sstkw, transient)

Patrick Haas, Prof. HES Christophe Balistreri, Assistant de recherche



**Patrick Haas**