

A CFD APPROACH TO IMPROVE WIND TUNNEL TESTS – MOTO2 AERODYNAMICS

THE HEPIA GLOBAL METHODOLOGY

Patrick Haas, Prof. Ord. Head of the fluid mechanics group (cmefe) *hepia Geneva Wind Tunnels*

CADFEM ANSYS SIMULATION CONFERENCE SWITZERLAND

Rapperswil, 14 June 2018

hepia

L'avenir est à créer

THE HEPIA SUBSONIC WIND TUNNEL

KTM Moto2 2017

- Test section: 2.0 m x 1.5 m
- Maximal speed: env. 280 km/h
- 6 component balances
- Measurement robot
- Visualization systems
- Thermal and cooling tests capabilities

L'avenir est à créer

THE HEPIA SUBSONIC WIND TUNNEL

6 component aerodynamic balance with rolling belt

L'avenir est à créer

PRODUCTION AND CALIBRATION OF AERODYNAMIC BALANCES

3 or 6 component balances

THE HEPIA SUBSONIC WIND TUNNEL

Heaters for the evaluation of thermal systems and cooling during aerodynamic tests

L'avenir est à créer

HEPIA CALCULATION CLUSTERS

Baobab HPC :	Intel Sandy Bridge, 2'500 cores, 10 To RAM, infinibar	nd (hepia + unige)
Gordias HPC :	ClusterVision, 224 cores, 448 Go RAM, infiniband	
EoleC1-5 :	Oracle SUN, 44 cores, 132 Go RAM	
EoleC6 :	Dell, 96 cores, 256 Go RAM	
Workstations :	8 workstations Dell and HP 16 cores, 126 Gb RAM	
Storage (NAS) :	2×70 To = 140 To with confidentiality management	
CFD software :	ANSYS CFD Associate (industrial), Research	
	and Teaching	L'avenir est à créer
00		hepia

MECHANICAL SPORTS AT HEPIA

- Egli Motorradtechnik (1985)
- Motos ROC Annemasse (1992)
- ASM Formula 3 (2006)
- Eco-marathon Shell : Consomini, Biomobile.ch (2003 actual)
- Motostudent PoliTo Turin (2011-12)
- Moto2 NCS Rapid Inside Modena (2011)
- Audit of the Formula 1 teams (2010 2013) P. Haas, R. Putzu
- MotoGP Akira Kawasaki (2014 2015)
- Moto2 Tech3 (2014)
- Vyrus 986 M2 Wings (2016)
- Moto2 KTM (2016 actual)
- Moto2 Garage Plus et Technomag CarXpert : Suter, Kalex, KTM (2014 - actual)
- Moto2 Geotechnology NTS project (2016 actual)

L'avenir est à créer

Haute école du paysage, d'ingénierie et d'architecture de Genève

Moto2 Tech 3 Mistral

AUDIT OF FORMULA 1 TEAMS : WIND TUNNELS

Some F1 wind tunnels

L'avenir est à créer

AUDIT OF FORMULA 1 TEAMS : WIND TUNNELS

- Scale of the models 60% max.
- Air speed max. 50 m/s
- Rolling belt and boundary layer suction
- Tests for all angles of the model
- More than 500 wind tunnel tests per month!

A test every 30 minutes !

Marussia model (60% scale)

L'avenir est à créer

AUDIT OF FORMULA 1 TEAMS : CFD

Albert HPC server, Sauber

Hes·so GENÈVE laute Ecole Spécialisé de Suisse occidentale

- Number of calculus limited per 2 month period
- 18 hour CPU per simulation
- Up to1'500 simulations per month
- Commercial softwares (Fluent, Star CCM+)
- Finite volume method
- Highly parallel clusters of 64 bit CPU (jusqu'à 6'000 cœurs)
- Up to 18'000 Gb RAM
- Infiniband DDR 48 Gbit/s interconnections or more
- Approx. 100 kW power supply... and cooling!

Up to 50 simulations of the full car per day!

L'avenir est à créer

WHAT CAN BE LEARNED FROM THE FORMULA 1 TEAMS ?

Mercedes AMG F1 WA06

Hes·so///genève

laute Ecole Spécialisée

de Suisse occidentale

Ferrari SF15T, 2015

How they use CFD technics :

 CFD show all flow variables everywhere in the domain without disturbing anything for all scales of space and time !

Understanding of the flow behaviour

New ideas !

Design optimization – Parametric studies

THE HEPIA GLOBAL METHODOLOGY

Since 2011, hepia uses with success a global methodology including 5 chapters :

1. Full scale wind tunnel tests

- With riders, seat definition and position
- CFD validation on the wind tunnel case
- Continuity with experience (known values)

2. Model wind tunnel tests (half-scale)

- Availability of the model all the year long
- Size of the model for a correct aspect ratio (surface of the test section / surface of the model)
- Costs (more days to work!)
- 3. Simulations (CFD)
 - Flow behaviour understanding
 - New ideas

Hes·so///genève

Suisse occidental

Motor cooling and thermal studies

et d'architecture de Genève

THE HEPIA GLOBAL METHODOLOGY

4. On track measurements

- Instrumented motorcycle
- Full scale
- In open space (real case)
- Torque measurements at the wheel
- Work done on a MotoGP for studying the blocage in the wind tunnel at hepia.

5. Race data logger measurements

Study of the data obtained during the races

Tom Lüthi 2017

- Recognize each method for their strengths and weaknesses
- Use a global methodology with only one objective: Increasing the results on the track !

Ľav	venir	' est	à cr	éer	
h	e	р	i	а	
Hau et d'	te éco 'archi	ole du tectur	pays e de	age, d'ingér Genève	iierie

HEPIA MOTO2 AERODYNAMIC PROGRAM RESULTS

_

Aerodynamic resistance:

	$F = \frac{1}{2}\rho$ SCx V	
X	•	SCx
Moto2 Kalex Aegerter 2015 (with hepia work)		
Simulations CFD	:	0.230
WT full scale (corrected)	:	0.252
WT original Kalex (without hepia work)	:	0.279
Moto2 Kalex Aegerter 2016 (with hepia work)		
WT full scale (corrected)	:	< 0.245
WT original Kalex (without hepia work)	:	0.269
Moto2 Suter Aegerter 2014 (with hepia work)	:	0.262
Moto2 NCIS 2011 original	:	0.320

L'avenir est à créer

hepia

ON THE TRACK...

• The swiss Moto2 is offently the fastest of the paddock...

Moto2

33

0	Rider	Nation	Team	Motorcycle	Km/h
12	2 Thomas LUTHI	SWI	Derendinger Racing Interwetten	KALEX	290.0 Race
7	7 Dominique AEGERTER	SWI	Technomag Racing Interwetten	KALEX	289.3 Free Practice Nr. 1
2	5 Azlan SHAH	MAL	IDEMITSU Honda Team Asia	KALEX	288.7 Race
1	Sandro CORTESE	GER	Dynavolt Intact GP	KALEX	287.6 Free Practice Nr. 3
7:	3 Alex MARQUEZ	SPA	EG 0,0 Marc VDS	KALEX	286.9 Race
2	Franco MORBIDELLI	ITA	Italtrans Racing Team	KALEX	286.8 Race
8	Tito RABAT	SPA	EG 0,0 Marc VDS	KALEX	286.8 Race
3	ULUIS SALOM	SPA	Paginas Amarillas HP 40	KALEX	286.3 Qualifying
4	Alex RINS	SPA	Paginas Amarillas HP 40	KALEX	286.0 Race
3	Mika KALLIO	FIN	Italtrans Racing Team	KALEX	285.9 Race
0.	Varias VIEDOE	CDA	Tach 2	TECU 2	DOE O Race

L'avenir est à créer

ON THE TRACK...

2016 : Morbidelli and Tom on the straight line of Qatar.

L'avenir est à créer

Scan 3D and production with 3D printers

Half-scale radiator

L'avenir est à créer

Model production

L'avenir est à créer

Moto2 Kalex with Dominique Aegerter

L'avenir est à créer

Visualization technics

Moto2 Kalex with Dominique Aegerter

L'avenir est à créer

CFD SIMULATION

- Radiator as a model (head loss and thermal source)
- Rotating wheels

Objectives

- Internal and external aerodynamics
- Drag optimization
- Cooling and thermal evaluation

CFD SIMULATION

Moto2 Kalex with Dominique Aegerter Shear stress x and speed in a x-y plan

L'avenir est à créer

CFD SIMULATION METHODOLOGY

Baobab Cluster (SLURM job manager)

Intel E5-2620 @ 2.00 GHz, E5-2630 v4, E5-2650 v2 Nodes of 16 and 20 cores

	#cores	1st step	next steps
	40 c	00:05:15	00:04:14
	48 c	00:39:10	
	48 c	00:39:41	
	60 c	00:03:37	00:02.54
	80 c	00:02:58	00:02:10
	96 c	00:05:43	
	100 c	00:02:07	00:01:46
	100 c	00:02:11	00:01:47
	100 c	00:02:11	00:01:45
	• 102 c	00:05:30	00:04:04
	105 c	00:17:00	
	110 c	00:27:24	
	120 c	00:02:00	00:01:29
	120 c	00:01:51	00:01:28
	120 c	00:01:54	00:01:26
	128 c	00:29:10	
	132 c	00:48:52	
	140 c	00:13:38	00:09:03
Hes·so///genève	140 c	01:45:59	

Haute Ecole Spécialisée

de Suisse occidentale

How calculations are distributed on the cluster nodes ? What effect does it have?

hepia

CFD SIMULATION METHODOLOGY

Baobab with only nodes type V5 (E5-2630 v4 of 20 cores) :

		#cores	1st step	next steps	6
17.12.16	slurm-2554888.out	120 c	00:01:50	00:01:26	6 x 20/20
17.12.16	slurm-2555168.out	140 c	00:01:32	00:01:20	7 x 20/20
17.12.16	slurm-2555367.out	144 c	00:12:20		7 x 20/20 + 4/20
17.12.16	slurm-2555370.out	141 c	00:01:34	00:01:15	7 x 20/20 + 1/20
17.12.16	slurm-2555371.out	142 c	00:05:26	00:03:46	7 x 20/20 + 2/20
17.12.16	slurm-2555435.out	143 c	00:09:10	00:06:00	7 x 20/20 + 3/20
18.12.16	slurm-2555612.out	121 c	00:01:55	00:01:29	6 x 20/20 + 1/20
18.12.16	slurm-2555613.out	122 c	00:01:52	00:01:28	6 x 20/20 + 2/20
18.12.16	slurm-2555614.out	124 c	00:09:00	00:06:11	6 x 20/20 + 4/20
18.12.16	slurm-2555615.out	126 c	00:14:39	00:09:51	6 x 20/20 + 6/20
18.12.16	slurm-2555617.out	116 c	00:07:55	00:05:25	5 x 20/20 + 16/20
18.12.16	slurm-2555618.out	118 c	00:01:56	00:01:30	5 x 20/20 + 18/20
18.12.16	slurm-2555619.out	120 c	00:02:05	00:01:26	6 x 20/20
18.12.16	slurm-2555632.out	144 c	00:08:44	00:05:57	7 x 20/20 + 4/20
18.12.16	slurm-2555658.out	138 c	00:01:36	00:01:16	6 x 20/20 + 18/20
18.12.16	slurm-2555661.out	136 c	00:10:15	00:06:33	6 x 20/20 + 16/20

With Baobab (slurm) : Only use full nodes !

L'avenir est à créer

h e p i a

CFD SIMULATION METHODOLOGY

next stens

Gordias (SGE job manager)

1st sten

#cores

Intel E5530@ 2.40 GHz 2 processors 4 cores / node = 8 cores / node

60 c	00:04:47	00:04:13	FLUENT.o2659
80 c	00:03:35	00:03:09	FLUENT.o2658
100c	00:02:53	00:02:31	FLUENT.o2650
105c	00:02:47	00:02:23	FLUENT.o2651
120 c	00:02:56	00:02:20	FLUENT.o2649
120 c	00:02:44	00:02:22	FLUENT.o2652
120 c	00:02:49	00:02:19	FLUENT.o2660
128 c	00:02:25	00:02:06	FLUENT.o2653
128 c	00:02:26	00:02:05	FLUENT.o2655
130 c	00:02:19	00:02:01	FLUENT.o2656
130 c	00:02:21	00:02:00	FLUENT.o2661
144 c	00:02:36	00:02:08	FLUENT.o2654

With Gordias (SGE) : The calculation time decreases approx. linearly with total number of cores used

THE USE OF CFD IN THE HEPIA METHODOLOGY

We have demonstrated in the Moto2 program, CFD is an important part of the methodology. At least:

- Flow understanding
- Blocage ratio correction
- Design optimization

hepia work actually using this methodology in quasi all projects performed for our industrial partners.

In a recent project, the concept has been pushed to the limit :

We performed the validation of the CFD for a case in wind tunnel at full scale and with a very large model for the test section :

- Same physics (flow, thermal, time dependent situations, ecc.)
- Approximately same gradient values
- Full details

Then, the final values have been calculated using the CFD model !

L'avenir est à créer

Haute école du paysage, d'ingénierie

et d'architecture de Genève

THE USE OF CFD IN THE HEPIA METHODOLOGY

The case used for validation

In this project, 90% of the work has been done in CFD.

However, the role of the wind tunnel was important :

- To validate the CFD method (mesh, model choices)
- To validate some data regarding modelized components (such radiators characteristics)
- Others secondary tests : Succion of things in the radiators, noise (feeling), ecc.

Even if, the major part of the work has been done in CFD, the full hepia methodology has been used.

This project demonstrates the hepia global approach is very robust and consistent.

L'avenir est à créer h e p i a Haute école du paysage, d'ingénierie et d'architecture de Genève

QUESTIONS ?

Patrick Haas, Prof. Ord.

patrick.haas@hesge.ch Tél +41 22 54 62 654

www.cmefe.ch

o hepia Geneva Wind Tunnels

L'avenir est à créer

D e

h

Haute école du paysage, d'ingénierie et d'architecture de Genève

i a